Inventory of China’s Energy-Related CO2 Emissions in 2008

Publication Type


Date Published




Although China became the world's largest emitter of energy-related CO2 emissions in 2007, China does not publish annual estimates of CO2 emissions and most published estimates of China's emissions have been done by other international organizations. Undertaken at the request of the Energy Information Administration (EIA) of the US Department of Energy, this study examines the feasibility of applying the EIA emissions inventory methodology to estimate China's emissions from published Chinese data. Besides serving as a proof of concept, this study also helps develop a consistent and transparent method for estimating China's CO2 emissions using an Excel model and identified China-specific data issues and areas for improvement.

This study takes a core set of data from the energy balances published in the China Energy Statistical Yearbook 2009 and China Petrochemical Corporation Yearbook 2009 and applies the EIA's eight-step methodology to estimate China's 2008 CO2 emissions. First, China's primary and secondary fuel types and consumption by end use are determined with slight discrepancies identified between the two datasources and inconsistencies in product categorization with the EIA. Second, energy consumption data are adjusted to eliminate double counting in the four potential areas identified by EIA; consumption data from China's Special Administrative Regions are not included. Physical fuel units are then converted to energy equivalents using China's standard energy measure of coal equivalent (1 kilogram = 29.27 MJ) and IPCC carbon emissions coefficients are used to calculate each fuel's carbon content. Next, carbon sequestration is estimated following EIA conventions for other petroleum products and non-energy use of secondary fuels. Emissions from international bunker fuels are also subtracted under the "reference" calculation of estimating apparent energy consumption by fuel type and the "sectoral" calculation of summing emissions across end-use sectors. Adjustments for the China-specific conventions of reporting foreign bunkers and domestic bunkers fueling abroad are made following IPCC definitions of international bunkers and EIA reporting conventions, while the sequestration of carbon in carbon steel is included as an additional adjustment. Under the sectoral approach, fuel consumption of bunkers and other transformation losses as well as gasoline consumption are reallocated to conform to EIA sectoral reporting conventions.

To the extent possible, this study relies on official energy data from primary sources. A limited number of secondary sources were consulted to provide insight into the nature of consumption of some products and to guide the analysis of carbon sequestered in steel. Beyond these, however, the study avoided trying to estimate figures where directly unavailable, such as natural gas flaring. As a result, the basic calculations should be repeatable for other years with the core set of data from National Bureau of Statistics and Sinopec (or a similarly authoritative source of oil product data). This study estimates China's total energy-related CO2 emissions in 2008 to be 6666 Mt CO2, including 234.6 Mt of non-fuel CO2 emissions and 154 Mt of sequestered CO2. Bunker fuel emissions in 2008totaled 15.9 Mt CO2, but this figure is underestimated because fuel use by Chinese ship and planes for international transportation and military bunkers are not included. Of emissions related to energy consumption, 82% is from coal consumption, 15% from petroleum and 3% from natural gas. From the sectoral approach, industry had the largest share of China's energy-related CO2 emissions with 72%, followed by residential at 11%, transport and telecommunications at 8%, and the other four (commerce, agriculture, construction and other public) sectors having a combined share of 9%. Thermal electricity and (purchased) heat (to a lesser degree) are major sources of fuel consumption behind sectoral emissions, responsible for 2533 Mt CO2 and 321 Mt CO2, respectively.

The 2008 emissions estimated for China in this study falls within the range of other international estimates, and suggests that the EIA methodology can be adopted to estimate China's emissions if the proper adjustments are made. While these results are helpful in understanding China's annual emissions, several key areas of data challenges affect the accuracy of this estimate. Industrial process-based emissions — an important source of emissions given China's industry-intensive economy and size of its cement sector — have not been included in this calculation and could be the focus of further model refinement. The accuracy of the Chinese emissions estimate can be further improved by addressing two unreported international bunker categories and developing China-specific carbon sequestration coefficients for non-fuel use energy products.

Year of Publication



Research Areas

, , Modeling

Related Files