Stationary and Time-Dependent Indoor Tracer-Gas Concentration Profiles Measured by OP-FTIR Remote Sensing and SBFM Computed Tomography

Publication Type

Journal Article

Date Published

03/1997

Authors

DOI

Abstract

Measurement of gas concentrations in indoor air using optical remote sensing (ORS) and computed tomography (CT) has been suggested but not thoroughly investigated. We present experiments in which one time-varying and 11 different steady-state tracer-gas concentration profiles were generated in a ventilated chamber and sampled in a horizontal plane by an open-path Fourier transform infrared (OP-FTIR) spectrometer for subsequent CT inversion. CT reconstructions were performed using the recently developed smooth basis function minimization (SBFM) technique. The CT reconstructions were compared with simultaneously gathered point-sample concentration measurements. Agreement between the two sampling methods was qualitatively very good, with concentration profiles generated by both methods showing the same features of peak location and shape. Quantitative agreement was generally good to within 50%. We discuss the sources of discrepancy and suggest directions for future research, especially with regard to monitoring time-dependent processes. With further refinements in the SBFM algorithm and improvements in optical remote sensing hardware, this technique promises to yield rapid and accurate measurements of the spatial distribution of gases in indoor environments.

Journal

Atmospheric Environment

Volume

31

Year of Publication

1997

Issue

5

Organization

Research Areas